Approximating the Rosenblatt process by multiple Wiener integrals

نویسندگان

  • Litan Yan
  • Yumiao Li
  • Di Wu
چکیده

Let Z be the Rosenblatt process with the representation Z t = ∫ t

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Non-central limit theorem for the cubic variation of a class of selfsimilar stochastic processes

By using multiple Wiener-Itô stochastic integrals, we study the cubic variation of a class of selfsimilar stochastic processes with stationary increments (the Rosenblatt process with selfsimilarity order H ∈ ( 12 , 1)). This study is motivated by statistical purposes. We prove that this renormalized cubic variation satis es a non-central limit theorem and its limit is (in the L(Ω) sense) still ...

متن کامل

Application of Malliavin calculus and analysis on Wiener space to long-memory parameter estimation for non-Gaussian processes

Using multiple Wiener-Itô stochastic integrals and Malliavin calculus we study the rescaled quadratic variations of a general Hermite process of order q with long-memory (Hurst) parameter H 2 ( 1 2 ; 1). We apply our results to the construction of a strongly consistent estimator for H. It is shown that the estimator is asymptotically non-normal, and converges in the mean-square, after normaliza...

متن کامل

Self-similarity parameter estimation and reproduction property for non-Gaussian Hermite processes

We consider the class of all the Hermite processes (Z t )t2[0;1] of order q 2 N and with Hurst index H 2 ( 1 2 ; 1). The process Z (q;H) is H-self-similar, it has stationary increments and it exhibits long-range dependence identical to that of fractional Brownian motion (fBm). For q = 1, Z is fBm, which is Gaussian; for q = 2, Z is the Rosenblatt process, which lives in the second Wiener chaos;...

متن کامل

Application of Malliavin calculus to long-memory parameter estimation for non-Gaussian processes

Using multiple Wiener-Itô stochastic integrals and Malliavin calculus we study the rescaled quadratic variations of a general Hermite process of order q with long-memory (Hurst) parameter H 2 ( 1 2 ; 1). We apply our results to the construction of a strongly consistent estimator for H. It is shown that the estimator is asymptotically non-normal, and converges in the mean-square, after normaliza...

متن کامل

A Decomposition of Multiple Wiener Integrals by the Lévy Process and Lévy Laplacian

In this paper, we consider the Lévy Laplacian acting on multiple Wiener integrals by the Lévy process, and give a necessary and sufficient condition for eigenfunctions of the Lévy Laplacian. Moreover we give a decomposition by eigenspaces consisting of multiple Wiener integrals by the Lévy process in terms of the Lévy Laplacian.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015